Skip to content
Snippets Groups Projects
Commit 503554b3 authored by Michel Spils's avatar Michel Spils
Browse files

no idea

parent d3dadaa2
No related branches found
No related tags found
No related merge requests found
# syntax = docker/dockerfile:1.3
FROM nvidia/cuda:11.6.2-base-ubuntu20.04
FROM pytorch/pytorch:2.1.2-cuda11.8-cudnn8-runtime
RUN apt update && apt install -y \
pip \
git \
&& rm -rf /var/lib/apt/lists/*
COPY requirements.txt /tmp/requirements.txt
COPY ../requirements.txt /tmp/requirements.txt
RUN pip install --upgrade pip && \
pip install --no-cache-dir -r /tmp/requirements.txt
WORKDIR /home/wavo-torch/notebooks
CMD jupyter-lab --no-browser --ip 0.0.0.0 --port 8888 --allow-root
#--notebook-dir=/tf
LABEL name="kiwavo-tk" version="0.0.4" maintainer="Michel Spils <msp@informatik.uni-kiel.de>"
# docker run -u $(id -u):$(id -g) --gpus all --rm -it -p 9999:9999 --name wln --workdir /../app/ki-wavo/notebooks
# --mount type=bind,source="$(pwd)",target=/app kiwavo/notebook:latest jupyter-lab --ip 0.0.0.0 --port 9999
#pytorch-forecasting==1.0.0
ARG USERNAME=mspils
ARG USER_UID=5006
ARG USER_GID=$USER_UID
# Create the user
RUN groupadd --gid $USER_GID $USERNAME \
&& useradd --uid $USER_UID --gid $USER_GID -m $USERNAME
LABEL name="wavo-dev" version="0.0.2" maintainer="Michel Spils <msp@informatik.uni-kiel.de>"
\ No newline at end of file
# syntax = docker/dockerfile:1.3
FROM pytorch/pytorch:2.1.2-cuda11.8-cudnn8-runtime
FROM nvidia/cuda:11.6.2-base-ubuntu20.04
RUN apt update && apt install -y \
git \
pip \
&& rm -rf /var/lib/apt/lists/*
COPY requirements.txt /tmp/requirements.txt
RUN pip install --upgrade pip && \
pip install --no-cache-dir -r /tmp/requirements.txt
ARG USERNAME=mspils
ARG USER_UID=5006
ARG USER_GID=$USER_UID
# Create the user
RUN groupadd --gid $USER_GID $USERNAME \
&& useradd --uid $USER_UID --gid $USER_GID -m $USERNAME
LABEL name="wavo-dev" version="0.0.2" maintainer="Michel Spils <msp@informatik.uni-kiel.de>"
\ No newline at end of file
WORKDIR /home/wavo-torch/notebooks
CMD jupyter-lab --no-browser --ip 0.0.0.0 --port 8888 --allow-root
#--notebook-dir=/tf
LABEL name="kiwavo-tk" version="0.0.4" maintainer="Michel Spils <msp@informatik.uni-kiel.de>"
# docker run -u $(id -u):$(id -g) --gpus all --rm -it -p 9999:9999 --name wln --workdir /../app/ki-wavo/notebooks
# --mount type=bind,source="$(pwd)",target=/app kiwavo/notebook:latest jupyter-lab --ip 0.0.0.0 --port 9999
#pytorch-forecasting==1.0.0
This diff is collapsed.
......@@ -140,11 +140,11 @@ class Objective:
def _get_model_params(self,trial : optuna.Trial):
#differencing = 0
differencing = trial.suggest_int("differencing", 0, 1)
differencing = trial.suggest_int("differencing", 1, 1)
learning_rate = trial.suggest_float("lr", 0.00001, 0.01)
# optimizer = trial.suggest_categorical("optimizer", ["adam","adamw"])
optimizer = trial.suggest_categorical("optimizer", ["adam"])
embed_time = trial.suggest_categorical("embed_time", [True,False])
embed_time = trial.suggest_categorical("embed_time", [False])
#model_architecture = trial.suggest_categorical("model_architecture", ["classic_lstm"])
#model_architecture = trial.suggest_categorical("model_architecture", ["transformer","autoformer"]) #TODO add models here
#model_architecture = trial.suggest_categorical("model_architecture", ["autoformer"])
......@@ -174,7 +174,7 @@ class Objective:
if model_architecture in ["classic_lstm", "last_lstm"]:
model_params = dict(
hidden_size_lstm=trial.suggest_int("hidden_size_lstm", 32, 512),
num_layers_lstm=trial.suggest_int("n_layers_lstm", 1, 3),
num_layers_lstm=trial.suggest_int("n_layers_lstm", 1, 2),#3
# num_layers_lstm = trial.suggest_int("n_layers_lstm", 1, 1),
hidden_size=trial.suggest_int("hidden_size", 32, 512),
num_layers=trial.suggest_int("n_layers", 2, 4),
......
......@@ -8,7 +8,7 @@ import torch
import pandas as pd
from utils.timefeatures import time_features
def fill_missing_values(df: pd.DataFrame, max_fill=10) -> pd.DataFrame:
def fill_missing_values(df: pd.DataFrame, max_fill=200) -> pd.DataFrame:
"""
Fills values in a DataFrame.
First columns recognized as Precipitation columns (containing NEW or NVh) are filled with 0,
......@@ -26,7 +26,7 @@ def fill_missing_values(df: pd.DataFrame, max_fill=10) -> pd.DataFrame:
na_count = df.isna().sum(axis=0)
# get all columns with precipitation and fill missing values with 0
mask = df.columns.str.contains('NEW') | df.columns.str.contains('NVh')
mask = df.columns.str.contains('NEW') | df.columns.str.contains('NVh') | (df.columns.str.startswith('N') & df.columns.str.endswith('_mm'))
prec_cols = list(na_count[mask][na_count[mask] > 0].index)
if len(prec_cols) > 0:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment