ADR - Creation of HTTP-based API with or without
HATEOAS for Antragsraum

Date 2023-10-12
Attendees = Theodossios Aswestopoulos
Maurice Laboureur
Miguel Ferreira
Rolf RoeRing
Jens Reese
Jorg Amelunxen

Status

G} Declined Q

Motivation:

We are designing our HTTP-based API for the "Antragsraum" to the client side of it. One of the critical decisions we need to make is whether to implement
this API using the HATEOAS principle or not.

The decision has significant implications for our system architecture, particularly in terms of where the business logic is located (client vs server). If we use
HATEOAS, much of the business logic will be moved to the backend, which may simplify the frontend but potentially increase the backend complexity. If
we don't use HATEOAS, the frontend will carry more of the business logic, which of course will its increase its complexity but simplify the backend.
Additional decision points to consider:

- Interoperability

- Scalability

- Maintainability
- Usability

Example

HATEOAS response

{
"id": "123,
"title": "The Great Gatshy",
"author": "F. Scott Fitzgerald",
"price": "$10.99",
"_links": {
"sel f": {
"href": "http://api.exanpl e.com books/ 123"
H
"reviews": {
"href": "http://api.exanple.con books/ 123/ revi ews"
b
"aut hor": {
“href": "http://api.exanple.conl authors/F. %20Scot t ¥20Fi t zger al d"
}
"purchase": {
"href": "http://api.exanpl e. com books/ 123/ pur chase"
}
}
}

In this response, the _I i nks field contains links that describe possible actions related to the book.

® The sel f link gives the URL for accessing the book's own data.

https://wiki.mgm-tp.com/confluence/display/~taswestopoulos
https://wiki.mgm-tp.com/confluence/display/~mlaboureur
https://wiki.mgm-tp.com/confluence/display/~mferreira
https://wiki.mgm-tp.com/confluence/display/~rroessing
https://wiki.mgm-tp.com/confluence/display/~jreese
https://wiki.mgm-tp.com/confluence/display/~jamelunxen

® Therevi ews link leads to the book's reviews.
® The aut hor link leads to information about the book's author.
® The pur chase link is where a client can go to purchase the book.

The client can understand and navigate the API based on these links, without needing to know the URL structure in advance. This is the key feature of
HATEOAS - it makes the API self-descriptive and easier to use and evolve over time.

Points For HATEOAS

- Decoupling: HATEOAS allows for a higher level of decoupling between the server and the client (as the delivered links contain a lot of information about
potential "follow up use cases"). The server provides the necessary state transitions, making the client less dependent on specific URL structures.

- Future-proofing: With HATEOAS, changes to the URL structure or business logic can be made on the server without breaking the client, as long as the
link relations do not change. This can make the APl more resilient to changes and easier to evolve over time.

- Self-Descriptiveness: HATEOAS can make the APl somewhat self-descriptive, which can improve its usability for developers. Clients can understand the
API without needing to refer to external documentation (or at least less).

Points Against HATEOAS

- Increased Complexity: Implementing HATEOAS can add complexity to the backend, as it requires the server to provide meaningful links and relations in
the responses.

- Limited Client Support: Not all HTTP clients and libraries support HATEOAS fully. (redux router has support)

- Overhead: HATEOAS adds extra overhead to each API response due to the inclusion of control information (links and relations). This could potentially
impact the performance of the API, especially in high-load scenarios. (overhead should be limited)

Decision

Quite some effort in the backend

For us right now limited benefit
Swagger already offers documentation
Decision Against HATEOAS

	ADR - Creation of HTTP-based API with or without HATEOAS for Antragsraum

